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According to linear theory the wave intensity of a slowly varying wave train becomes
particularly large near caustics. In this paper it is shown how the waves are modified
when the wave intensity is sufficient for nonlinear effects to begin to be important.
Two types of near-linear caustics can arise in which nonlinearity either tends to
advance or to retard the reflexion of waves from the caustic. General examples are
given in terms of one-dimensional wave propagation, and of propagation in a uniform
medium. Detailed consideration is given to a particular example: small-amplitude
water waves on deep currents. This helps to provide an interpretative framework for
the large-amplitude results presented in the companion paper (Peregrine & Thomas
1979). For the more exceptional case of triple roots, or cusped caustics, the increase
in wave intensity is even more dramatic. In three appendices the analysis for caustics
is extended to some higher-order cases.
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342 D. H. PEREGRINE AND R.SMITH

1. INTRODUCGTION

In many wave fields the most prominent features are caustics and their singularities. Ray
theory for infinitesimal slowly varying waves predicts infinite wave intensities at these enve-
lopes of the group-velocity paths (or rays). It is the exceptionally large, but finite, wave in-
tensity that makes such features so noticeable and so important. There are two properties of
the singularity which indicate that the simple ray solution is invalid. The wave amplitude is
not slowly varying, and the waves are not infinitesimal.

Linear analyses of the wave field near caustics date back to Airy (1838). The rapid variation
of the wave amplitude is allowed for by the retention of extra terms. These higher-order dis-
persive (h.o.d.) terms give rise to solutions involving Airy functions (Miller 1946; Abramowitz
& Stegun 1964, § 10.4). Recent examples of such work are by Ludwig (1966) on uniform
expansion, Smith (1970) on whispering-gallery waves, and Richards (1973) on seismic waves.
Linear theory gives a solution with no singularities, but this may be inadequate if an approxi-
mation of infinitesimal amplitude has been made. Present interests in linear waves tend to be
directed towards higher-order generic ‘singularities’ of which the simplest is a cusp of a caustic
(see, for example, Berry 1976, Budden 1976).

Nonlinear analyses of waves near caustics have largely concerned non-dispersive waves;
for example, Ostrovosky (1976) gives a review of results for acoustic and shallow-water waves.
Bobbitt & Cumberbatch (1976) also derive equations for shallow-water waves in water of
varying depth. A distinctive feature of the results for non-dispersive waves is that the wave
envelopes are necessarily unsteady.

This paper presents results for weakly-nonlinear dispersive waves near caustics. It is found
that there are steady solutions for the wave envelope in which nonlinearity is balanced by a
change of wavenumber. The major result is that caustics fall into two distinct categories,
these are given the labels R and S. Examples of each category are given for deep water waves
on currents. Much of this work arose from attempts to relate and interpret the results of Smith
(1976 a) and of Peregrine & Thomas (1979), which is referred to as P. & T. in the following, on
different facets of this particular physical example.

The basic results of general slowly varying wave theory are presented in § 2. An averaged
Lagrangian is used (Whitham 1974), since averaging of equations of motion gives equivalent
results. That is, for linear waves propagation can be described in terms of the wave action
following paths (rays) at the local group-velocity. This interpretation does not extend to near-
linear waves and a fuller discussion of group velocity in this context is given in § 6 of the
companion paper P. & T.

Caustics are introduced in § 3. They arise as envelopes of rays in the linear theory which
lead to a singularity of the amplitude where the approximation becomes invalid. The simplest
near-linear theory shows two very different types of solution in the neighbourhood of a linear
caustic. The R solution has a singularity at finite amplitude before the linear caustic position
is reached, and the S solution penetrates beyond the linear caustic position and exhibits a
rapid growth in amplitude.

In order to illustrate how the two types of caustic can arise two classes of wave problems are
investigated. Section 3 gives an analysis of wave propagation in a non-uniform medium for
wave and medium properties varying along a single direction. Section 4 gives a local analysis
of three-dimensional wave propagation near a curved caustic in a uniform medium. In each
class of problems both categories of caustic can arise.
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NONLINEAR EFFECTS NEAR CAUSTICS 343

Section 5 looks at the specific physical example of water waves on deep currents. It is deter-
mined upon which currents caustics can occur and to which category the caustics belong.
Similar results can be expected to arise for other dispersive waves in a moving medium.

The singularities in ray solutions at caustics can be avoided by finding uniform solutions;
these solutions involve Airy functions for linear equations. The linear case is examined in § 6
by using the operator expansion method which provides a particularly simple derivation from
the dispersion relation. Since we have found that many users of ray solutions are either un-
aware of uniform caustic solutions, or find it difficult to use them, we also give explicit formulae
for determining a uniform description of the waves from the non-uniform ray description.

Section 7 proceeds to use the same approach heuristically to examine the composite effect
of h.o.d. and nonlinearity near caustics. The heuristic results agree with those derived by Smith
(1976 a) and for the two categories of caustic the role of the Airy function in linear theory is
taken over by either of two Painlevé transcendents. Recent work by Kaup & Newell (1978)
leads to some solutions of the corresponding unsteady equations which are discussed. The
results of this section are qualified by the information given in P. & T. and in the conclusion
an analogy is drawn between wave behaviour near an S caustic and waves on a beach. Obser-
vations of water waves suggests that in practice R caustics are usually regular and that S
caustics are frequently singular and involve wave breaking. Of course, this assumes that the
waves are capable of being described by near-linear theory as they approach the caustics and
that wave amplitudes have not become too great in the approach to the caustic.

The analysis for caustics provides a basis for the study of higher-order ray singularities.
The appendices all concern the case in which there is a three-fold coalescence of adjacent rays.
In appendix A it is shown that for one-dimensional propagation three types of near-linear
triple roots can arise, characterized respectively in terms of reflexion, strong amplification,
and transmission across the triple-root position. The comments made earlier concerning the
practical use of uniform solutions apply with even more force for cusped caustics, or triple-
roots. Appendix B provides general formulae which permit the uniform linear solution to be
constructed from the readily calculable, but highly singular, ray solutions near a cusp of a
caustic. Finally, appendix C gives a derivation of the nonlinear partial differential equation
which governs the wave height near a triple-root when both nonlinear and high-order dispersive
effects are important.

2. SLOWLY VARYING NEAR-LINEAR WAVES

In all this work we assume that all length and time scales are very much greater than the
wavelength and period of the waves. It is possible to introduce a small parameter corresponding
to the smallness of the wave scale, but, since all the results in this paper concern different first
approximations’ in this parameter, formal perturbation expansions are not necessary.

The other small parameter in this problem is a measure of the wave amplitude. This is
carried beyond the first approximation but again a perturbation expansion would introduce
unnecessary formalism since throughout the paper we assume that the appropriate plane wave
solution and first correction to the dispersion equation are known. That is, we consider waves
such that in a homogeneous medium, and when the wave amplitude is small, there is a plane-
wave solution of the form

u(®,9,8) = ugtug+.... (2.1)
32-2
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344 D. H PEREGRINE AND R.SMITH

Here the leading order term #, has the form
u; = Re[af(y) eiX], x = k-x—wt (2.2, 3)
and the solution is near-linear in the sense that

un(¥, X) = 0(a). (2-4)
It is of course implicit that the solution should be a sensible approximation to the physical
waves it models. The wave function u, and f(y), may be a scalar or a vector (e.g. a velocity
potential, or a velocity field). A point in the propagation space is defined by the vector &
and in the transverse (or modal) space by y. For example, for surface gravity waves, ¥ is
a two-dimensional horizontal position vector, and y is a one-dimensional vertical coordinate
(for more details see Hayes 1970).
If a Lagrangian exists, an averaged Lagrangian may be found by substituting the plane-
wave solution (2.1) and averaging with respect to x. Typically the averaged Lagrangian has

the form L = G(x,t, 0, k) a+1H(k, %, 1) a*, (2.5)

where G, H, v, k and a are all assumed to be slowly-varying functions of (&, ¢), and a is written
in place of |a| for simplicity. Only the first nonlinear effects on wave propagation have been
included and any dependence of H on » has been eliminated by using the linear dispersion

relation G(w, k) = 0. (2.6)

The above representation (2.5) does not include all cases where a potential is used, such as
for water waves on finite-water depth. For more details see Whitham (1974). Caustics have
not been studied in this case. Note for comparison with some other work that if instead of
assuming the form (2.2), the form

u, = a; f(y) e* +complex conjugate (2.7)
were taken, then F = 4Ga?+ 8Has. (2.8)
Consistency relations between » and k are obtained by assuming they arise thus,
w =—0x/0t, k= Oy/0x, (2.9)
from a phase function y so that consideration of the second derivatives of y yields

ok dw 0

-(ﬁ = -a_x’ -a—x A k = 0. (2.10, 11)

We use 0/0x to denote the vector operator (0/0x,, 0/0x,, 0/0x;) and distinguish between
partial derivatives in the space (&, ¢) and partial derivatives in the space (w, k, ¥, ¢) by using
subscripts for the latter. For example

oG ow ok

= = G, + G + G (2.12)

The Euler-Lagrange equations of the variational principle

3% =0
for variations of @ and x are

dw 0
$a=0 and '67—5—‘”"31!:0. (2.13,14)
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NONLINEAR EFFECTS NEAR CAUSTICS 345
On using the expression (2.5) for #, these become

G+Ha? = 0, (2.15)
the dispersion relation, and
0

2 (Gut) — o (G + Y Ht) = 0, (2.16)

the equation for conservation of wave-action, G, a2.
The linearized system of equations (2.10, 11, 15 and 16) obtained by putting H = 0, have
a single set of characteristic directions given by

ax/at = - Gk/G(o = Ct)k b Cg, (2.17)

where cg is the group velocity of the linear waves. Lines defined by (2.17) are often called rays.
Solutions of the linear equations may be found by integrating in (&, ¢) along the rays from an
initial surface (or line) with given initial values w, k and a. The differentiated forms

0G/ot = 0, 9G/ox = 0, (2.18, 19)

of the dispersion relation, G = 0, are used to find ® and k, and then amplitude is found from
the wave-action equation.

The near-linear equations are more difficult to integrate since they either have distinct
characteristics or complex characteristics. This also means that their solutions are often not
uniformly valid, either because characteristics of the same family meet, or the solutions are
unstable (see Whitham 1974, Lighthill 1967, Hayes 1973, P. & T.). We now consider how
solutions to these equations behave in a region where these linear solutions become invalid.

3. STRAIGHT CAUSTICS

In many examples of wave propagation rays calculated from linear theory meet. In general
if the waves are propagating in three (two, one) dimensions they meet on a surface (line, point)
which is an envelope of rays and is called a caustic. The caustic may occur because of non-
uniformities in the initial conditions, or in the propagating region or in both. The position of
caustics may vary with time and will generally have some lines (points) at which the surface
(line) has a singularity. For example, a cusp is the simplest generic singularity. In the main
body of the present paper we do not attempt to deal with the more complex singularities, but
some results for cusps are given in the appendices.

In this section we consider part of a caustic surface (line) which is locally plane (straight).
Such a caustic can only occur in an inhomogeneous medium. Curved caustics in a uniform
medium are discussed in the next section and it is clear how the two cases may be combined
to cover curved caustics in a non-uniform medium. Attention is confined to the case of a steady
caustic in a steady wave field. With these restrictions solutions relevant to the neighbourhood
of a caustic may be found, since we may assume that variations of wave properties along the
caustic are negligible compared to variations perpendicular to the caustic.

Let x be a coordinate measured perpendicular to the caustic with x = 0 being the plane
(line, point) of the caustic, let i be a unit vector in the +x direction and let the waves approach
the caustic from the —x direction. As indicated above, we now suppose all wave properties to
depend on x alone. The consistency relations (2.10, 11) immediately show that w and k A i
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346 D. H. PEREGRINE AND R.SMITH

are constant and thus the amplitude, @, and the wave number component perpendicular to
the caustic, k-i = [ say, are the only dependent variables to be found. The values of the
constants and boundary conditions for the variables are found by matching the caustic solution
with the wavefield outside the caustic region.

In the case of linear waves, a and [ are determined from the dispersion relation which might
now be written as G, 1) = 0, (3.1)

and from the wave action equation which integrates to
—Ga® = +B, (3.2)

where B is the constant incident wave-action flux. If we follow the convention that G, be
positive, then the plus and minus signs refer to the incident and reflected waves respectively.
The form of G must be such as to have solutions corresponding to both the incident and re-
flected waves; for example, G, kb, ©) = 0?—c3(x) k2
for a non-dispersive medium.

The caustic surface is an envelope of the rays; therefore, rays are tangential to it and thus
the i component of the ray equation (2.17), that is

dx/dt = —G,/G,, (3.3)

must be such that dx/d¢ = 0 at the caustic x = 0, since waves do not propagate past that
point (line, plane) in this approximation. Hence, G; = 0 and, from equation (3.2), the ampli-
tude, a, is singular.

A mathematically convenient feature of the linear equations is that we can first solve the
dispersion relation (3.1) for /(x), and subsequently solve the wave action equation (3.2) for
a(x). In particular, it is straightforward to clarify the nature of the singularity.

At the caustic, ¥ = 0, the dispersion relation defines the wave-number component /,:

G(0,1,) = 0. (3.4)

If G has a Taylor series expansion then
G(x, 1) = xG,(0, ly) +5(1=1y) Gy (0, L) +...; (3.5)
hence I ~ 1+ (2G,/Gy)} (—x)3, (3.6)
and, from equation (3.2) a =~ (B2)2G,/G)t (—x)-t. (3.7)

For the near-linear equations we cannot proceed in the same way. Rays do not necessarily
exist and there is not an immediate criterion to determine where the wave amplitude is greatest.
It also proves to be of little value to look for singularities in the solutions. The best approach
is to realise that, for solutions to be realistic, amplitudes must be small and thus solutions
should depart little from the linear solution for infinitesimal amplitude.

Consider the (x, /) plane. The linear solution is a line given by the dispersion relation (3.1)
and at a caustic its tangent is parallel to the / axis since G; = 0. For examples see figures 6
and 7. The near-linear dispersion relation is

G+ Ha? = 0, (3.8)

and thus as long as H is non-zero the solution curves for small values of @ must lie on one side
of the curve G = 0. We shall not consider special cases where H may be zero near a caustic.
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NONLINEAR EFFECTS NEAR CAUSTICS 347

The near-linear wave-action equation is

—(Gy+1H0%)a? = £ B. (3.9)
Now, 4% may be eliminated between (3.8) and (3.9) to give
G(HG,—iGH,)/H®* = +B. (3.10)

For constant B this defines solution curves in the (x, /) plane. However, B must be small,
O(a?), so that the solution curves are close to the lines given by B = 0. That is the lines

G =0 and HG,-}GH, = 0. (3.11, 12)
These two lines clearly intersect at the linear caustic point
G=0 G,=0. (3.13)

Once the two lines (3.11, 12) are found it is easy to sketch solutions for small B, since the sign
of H in the dispersion relation (3.4) indicates which side of the linear solution, G = 0, the
solution line lies.

_\\_

-

(a) * )

Ficure 1. Diagrams illustrating the behaviour of near-linear waves close to a linear caustic point. Heavy lines
represent linear solutions. Dashed lines represent HG,—}GH; = 0. Thin continuous lines represent solutions
of simple slowly-varying near-linear theory. (a) Type R caustic; () type S caustic.

Solution lines may take one of two different forms, depending on the sign of H/G, at the
linear caustic point. We call them type R and type S for H/G,, positive and negative respectively.
"The two types of curve are sketched in figure 1. (Note that G, and G}, have the same sign, by
our choice of ¥, so H/G,; is also a distinguishing parameter.)

For a type R caustic the solution lines are inside the curve (strictly on the concave side of
the curve) of the linear solution. There are two branches of the nonlinear solution which cor-
respond to incident and reflected waves. Unlike the linear solution these do not meet at a
caustic point. However, each branch does have a singularity where its tangent is perpendicular
to the x axis. This singularity implies a rapid variation of wave number with x and hence this
approximation becomes invalid before the singularity is reached. It is of particular interest to
note that the singularity is at a sufficiently small amplitude that the near-linear approximation
can be expected to remain valid. It occurs before the waves reach the linear caustic point.

For a type S caustic the situation is quite different. As the linear solution approaches its
singularity so the near-linear solution diverges from it to follow the second of the lines (3.11).
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348 D. H. PEREGRINE AND R.SMITH

There is no singularity for the wave amplitude. However, as the solution diverges from the
linear solution so the amplitude of the waves increases and the near-linear approximation
becomes inappropriate. The subsequent behaviour of the waves then depends on their finite-
amplitude properties. For example, in the case examined in § 5 of P. & T. the finite-amplitude
solution is qualitatively similar to a near-linear solution right up to the steepest possible wave
train.

For both R and S caustics uniform linear solutions exist as shown in § 6, but the amplitude
of those solutions can be too large for linear theory to be valid.

The properties of solutions near these singularities may be found by Taylor series expansion
of G, G; and H about the linear caustic point. The leading terms in the dispersion equation
and wave-action equation may be written

xGy+3(0—1,)2 Gy +a2H = 0, (3.14)
and xGyy+ (I~ 1) Gy+3a*H, = —B/d?, (8.15)

where the derivatives are all evaluated at (0, /;). In the dispersion equation, the first two terms
balance for linear waves, so it may be expected that all three terms are of the same order for
near-linear waves. If that is so then the leading terms of the wave-action equation (3.15) are

(l—b) Gy = —B/a?, (3.16)
and hence, on eliminating (/—{,) from (3.14),
xG,+3B?/Gat+ a?H = 0. (3.17)
A measure of the energy amplification is given by
4 = a*/|B|, (3.18)
and with the introduction of the quantities
X = 22G,G,; and b = 2G,;H|B|, (3.19, 20)
equation (3.17) takes the simple form
X+1/4%+b4 = 0. (3.21)

The nonlinearity of the waves is proportional to . The solution is only singular for 4 > 0, in
which case the singularity occurs at

43 = 2/b, X =-—3(}b)%. (3.22)

The behaviour of solutions is shown in figure 2.

However, this is not the only possibility; for small, or zero, values of B all the terms on the
left hand side of equation (3.15) may be of the same order. In that case the leading terms in
the dispersion equation are

xG,+a*H = 0, (3.23)
or X+b4 = 0. (3.24)

However it may be seen in figure 2 that these correspond to the solution curves for type R
caustics, b > 0, after the singularity is met. For type S caustics, & < 0, this solution is more
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NONLINEAR EFFECTS NEAR CAUSTICS 349

relevant. Note, it is not just an asymptote of the solution (3.21) since the variation of (/- /)
with x differs in these two limiting cases. In the first case by defining

K= (-1,) Gy (3.25)
we obtain X+K2—bsgn (B)/K =0, (3.26)
whereas in the second case K+hX+bsgn (B)/X =0, (3.27)
where h = (2G,,H+G,H,)/(4G,GH). (3.28)
/—0.0L
—0.05
—010
e
_—
7
L 1 1 1 1 L X
—0.20 —0.10 0 0.05

Ficure 2. The amplitude of near-linear slowly varying waves close to a caustic: local solution. Type R caustics
have b > 0. Type S caustics have b < 0. The line b = 0 is the linear solution, which meets 4 = 1 at
X = —1. 4 = a|B|-}, X = 2xG,Gy, b = 2G,H|B|.

As has been indicated equations (3.23) and (3.27) truncated to
K+hX =0 (3.29)

are appropriate for solutions with B = 0.

There are many situations, particularly with boundaries, where this solution is relevant.
Particular examples are given in P. & T. The solution is also of interest since it is intermediate
between waves approaching a caustic, B > 0, and waves reflected from a caustic, B < 0,
and thus may be of value in constructing local or uniformly valid solutions.

4. CURVED CAUSTICS IN A UNIFORM MEDIUM
(a) Linear theory

In a uniform medium rays are straight lines, and to determine the linear ray solution it
suffices to know the wave amplitude and ray direction on some surface &. Suppose that the
surface and the ray direction respectively have the parameteric representations r(£!, £%) and
t(£L, £2) in terms of generalized coordinates £1, £2. Then the rays can be represented as

r(&, &%) +As(8, £, (4.1)

where A is the distance along the ray from the reference position on &.

33 Vol. 292. A.


http://rsta.royalsocietypublishing.org/

'\

o

A \
=\
L A

/|
AL

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

P\
N \
AL A

N

y \

/7

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

350 D. H. PEREGRINE AND R.SMITH

The vector separation between points on adjacent rays is
(ry+At) A&+ (ry+ At,) dE2+¢dA,

where the subscripts denote partial derivatives with respect to £. A necessary condition for
the rays to meet is that the three vectors 7, + At;, r,+At,, £ be co-planar:

[A2(8, A ty) +A(By A Ty 13 Abg)+ 1, ATy 2 = 0. (4.2)

This quadratic in A defines the two principal radii of curvature p, p® of the family of rays (see
figure 3). The corresponding principal directions on & define a pair of orthogonal planes with
respect to the ray direction (Weatherburn 1927, ch. 10). For the important special case in
which the rays are normal to the reference surface &, p® and p® are precisely the principal
radii of curvature of &.

Ficure 3. Intersection of adjacent ray paths in a uniform medium. The infinitesimal line segments P, Q, and
P,Q, cach lie in their respective sheet of the caustic surface and are perpendicular to each other.

The area of a ray tube can be expressed simply in terms of its initial area d4,, the distance
from &, and the principal curvatures

dA(E, £, 2) = ddy(, &) [1=2/p™] [1—-2/p®)].

For steady infinitesimal waves the wave action equation (2.16) can be interpreted as a state-
ment of the fact that the wave action flux G,a? is conserved along ray tubes. Since in a uniform
medium G,, is constant along rays, we can immediately find solutions for the wave amplitude
in terms of the initial amplitude @, on the reference surface &:

a(Eh, 8% ) = ap(£Y, £%) [1=A/p®| 7 [1—2/p®| . (4.3)

As has several times been noted, the linear ray solution becomes singular where adjacent
rays meet. This caustic or focal surface C¥ has two sheets corresponding to the two principal
radii p@, p®:

r(£, £%) +p9(E, &) (Y, E7). (4.4)

Sufficiently close to a caustic surface the distance along the ray direction can be expressed in
terms of the radius of curvature ! of the caustic in the direction of the rays, and the distance
X normal to the caustic (see figure 4). By this means it can be ascertained that the linear ray
solution for the amplitude asymptotes to the singular expression:

ag(£Y, £2) ot [1/p0 —1/p®@|-}|2X|-* as |X|->o0. (4.5)
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(b) Near-linear theory

In order to study the way in which weak nonlinearity modifies the ‘slowly varying’ solution
near a caustic we make a local analysis. First a local Cartesian coordinate system with its
origin on the caustic is introduced. The x-axis is taken to be along the normal and pointing
away from the waves, and the y-axis to be in the direction of the grazing linear ray (see figure 4).
Locally the caustic surface can be represented

x = L(ay?+2Byz+7yz2) +..., (4.6)

where «a is positive, and cubic terms have been neglected.

F1cure 4. Definition of coordinates near a caustic surface. A ray Oy touches a caustic surface at O. Ox is the
normal at O away from the waves, a is the curvature of the caustic surface in the plane Oxy.

Putting k = (I, m,n) and k = kg at the origin, the choice of Oy gives G; = G, = 0, and
thus near the origin the leading terms in the dispersion relation (3.8) are

(m—mq) Gy, +3(1—1o)® G+ §(n— o) Gy +a*H. (4.7)

The derivatives of G are all independent of position since the medium is uniform. Again, H
and its derivatives are assumed to be O(1).

There are many ways of transforming coordinates so that the surface (4.6) coincides with a
coordinate surface in the neighbourhood of the origin. For example, in two dimensions (i.e.
B = 7y = 0) coordinates corresponding either to a conformal transformation or to polar co-
ordinates may be used. Here we do this by taking X to be the normal distance from the caustic
and Y, Z to be the y, z coordinates of the intersection of the normal with the plane ¥ = 0:

X =x—3(ay®+28yz+yz¥) +..., (4.8)
Y =y+afay+pBz)+..., Z=z+x(fy+yz)+.... (4.9)

It is convenient also to introduce transformed wavenumbers L, M, (i.e. the partial derivatives
of the phase function y with respect to X, Y, Z respectively):

l = L+{(aY+BZ)M+ (BY+yZ)N}+...,
m=M+{—(aY+BZ)L+X(aL+pBN)}+..., (4.10)
n=N+{—-BY+yZ) L+ X(PM+yN)}+....

33-2
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In terms of the transformed coordinates and wavenumbers the leading terms in the consist-
ency equation (2.11) and in the wave-action equation (2.16) can be written

oN oM 0L ON oM oL

W_G—Z—_I_"' = 0, -6-Z~'6—-X+-.. = O, —a—z—Y——a_Y-l_'“ = 0, (4.11)
% (a"Gk+%a4Hk)+... = 0. (4.12)

For the linear case we already know that the ‘slowly varying’ solution for a and for 0//0x
becomes singular at the caustic. Thus, we anticipate that for the near-linear case there will
be a similar rapid variation with X in both @ and L as the caustic is approached. This leads us
to make a boundary-layer approximation and to simplify equations (4.11, 12) by retaining
only the X-derivatives. Also, there is now no loss of generality if we neglect the ¥, Z-variation
in the transformations (4.10) (the small change in the differential coefficients is precisely that
of moving the origin of the local Cartesian coordinate system). It follows that A4, N are locally
constant and that the boundary layer form of the dispersion relation (4.7) is

X(amy+ fng) G, +3(L—Ly)2 Gy +a*H = 0. (4.13)
The dominant terms in the wave-action equation are
X(dmo""ﬁno) Gm+ (L_Lo) G”+%a2Hl = ‘—B/az. (4:.14:)

As with equation (3.15) these terms may have differing orders of magnitude. On the wavy
side of the caustic the boundary-layer solution matches with a linear ray solution of the far
field provided that the constant of integration B is given by

B = a3ab|1/p" —1/p®|-1 [(my -+ Bng) Gy Grlt (4.15)

For curved caustics the role of the non-uniformity of the propagating medium, the term
G,, is taken over by the curvature term (am,+ fny) G,,. With this minor change, equations
(4.13, 14) can be recognised as being similar to the approximations (3.14, 15) in the previous
section. Thus, in the immediate vicinity of the origin the qualitative results are unchanged.
In particular, there is the same two-fold classification of caustics according to the sign of
H/Gy, or of (amy+ pn,) G,,/H.

Our choice of coordinate system implies that « is positive and that G,, is negative to conform
with our convention that G, is positive. For two-dimensional waves, # = 0. Thus unless the
waves are unusual and have m, negative, the type of caustic depends solely on the sign of H.
For H positive, caustics will be of type S and for H negative of type R. Thus, all curved caustics
in two-dimensions are of the same type for the same wave motion in a uniform medium.

Similar results hold for wave motion in an isotropic medium since in that case G may be

written as G(w, k) = w2—g(k) (4.16)

and k is parallel, or anti-parallel, to the group velocity, so that /, and #, are zero.

5. WATER WAVES ON STEADY DEEP GURRENTS

A relatively simple example with a full range of different solutions is provided by deep-water
waves on a current. A background to the subject is provided by the survey by Peregrine (1976)
and further results are in P. & T.
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For deep-water waves the linear dispersion equation for still water is
G(w, k) = w*—gk = 0, (5.1)
where £ = |k|. (Note that use of Luke’s (1967) Lagrangian leads to
& = {p(v?/gk-1) &, (5.2)

but any function f(w, k) can be incorporated into a different measure of the amplitude. For
the choice (5.1) of G the appropriate amplitude measure is proportional to the amplitude of
the velocity potential for the motion.) For steady waves on a current U(#) the Doppler relation,

w=oc+k-U, (5.3)

where o is the frequency of waves relative to the water, gives
Gw, k, &) = (w—Fk-U)2—gk =0 (5.4)

as the dispersion equation for linear waves on a deep current.
If we put Ulx) = U(x)i+ V(%) j, (5.5)
and k = li+mj, (5.6)

then at a straight caustic, ¥ = 0, caused by the current we have equation (5.4) and
G, = —-2U(w—-lU-mV)—gl/k = 0. (5.7)

The simplifying assumption of a straight caustic means that it is only the x dependence of U,
which is taken into account close to the caustic. The derivation in § 3 corresponds to assuming
U(x), ® and m are known and using (5.4) and (5.7) to determine the caustic position and the
value, [, of / at the caustic. However, it is more interesting to examine these equations from
another direction.

That is, we enquire, ‘on what currents can caustics occur?’ This is answered by choosing
m, the wave number component along the caustic and eliminating / between equations (5.4)
and (5.7), which yields a relation between Uw/g and Vew/g. Then, for each mg/w? there is a
line of points in the Uw/g plane at which caustics can occur. There is no loss of generality in
choosing m and o to be > 0 and figure 5 shows some lines of caustic points in the Uw/g plane.

Each line of caustics points, other than m = 0, has two symmetrical branches. The point

of symmetry is U = (0, w/m). (5.8)

The cusps correspond to the triple-root caustics (i.e. G = G; = G;; = 0) discussed in the
appendices. On each branch / varies smoothly from — oo, through zero at U = 0, to + co.
The line U = 0 also satisfies equations (5.4) and (5.7) as £ — co. This is a stronger singularity
than a caustic and is discussed further in P. & T. (It corresponds to / - oo in figure 7.)

The way in which these caustics arise is clarified by considering two specific simple current

distributions: (@) Ulx) = V(x)J, (5.9)
and (b) U(x) = U(x)i. (5.10)

Case (a) corresponds to a shearing current which bends rays around until they are parallel
to the current and form a caustic if the current increases sufficiently with x. Figure 6 shows
solutions of the dispersion equation for various values of m. Note how two different caustics
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7“2‘0
‘\Vl.l

=15 | 03

Vo/g

—10

-1+-0.5 05

11 Uw/g

05

Fiure 5. Currents on which a steady straight caustic may form for periodic wave trains.
Each line is for a different value of mg/w?.

' lg/o)'“'

Ficure 6. Linear dispersion relations for waves on a current Ui+ V(x)j. The full lines are for U = 0 and are
labelled with values of mg/w?. The broken lines are for mg/w? = 0.3 and are labelled with values of U.
The marks on each line lie on the same side as near-linear solutions. Caustics occur where the lines are
vertical.
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can arise for one value of m if V(x) has sufficient variation. (A caustic occurs where the lines
have vertical tangents.) These would involve quite different wave trains. The incident wave
train is simply reflected with a change of sign of /. The same figure also includes solutions for
non-zero U to show how a further different caustic arises.

Case (b) corresponds to currents flowing with or against the waves. In the simplest case,
m = 0, a caustic occurs when an adverse current (i.e. U < 0) is sufficiently strong to stop the
waves propagating. The ‘stopping’ velocity is U = —1g/w. In this case if

1 < mg/w? < 342 (5.11)

two different caustics can arise for any wave train, as may be seen from figure 7. Peregrine
(1976, § D) gives more details of this case as well as some details of the linear solutions for
the caustics for m = 0.

—04 ‘ —02 ‘ 0w
Ficure 7. Part of the linear dispersion relation for waves with wave-number vector kB = [(x) i+ mj on a current
U(x) i. The values of mg/w® are given on each line; ¥ = Uw/g; the near-linear solution lies to the left of
each line. Comparison may be made with figure 4 of P. & T. which shows finite-amplitude solutions for
m = 0.

The near-linear dispersion equation for water waves on deep currents is
G+Ha?® = (w—k-U)%—gk(1+£k%?) = 0. (5.12)

In figures 6 and 7 an indication is given of which side of the linear dispersion relation it lies,
The type of near-linear caustic depends on whether the linear curve is concave or convex
toward its ‘near-linear side’ at the caustic point. It may be seen that both types of caustic
occur. The caustic on a simple shear is of type R, but the stopping velocity caustic is of type S.

When these are related to the caustic lines in figure 5 we find that type R caustics occur
between the cusps and type S caustics occur on the branches of the lines which extend to
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V = + 0. No detailed near-linear solutions have been produced since P. & T. give details
of finite-amplitude solutions for a representative caustic of each type. (These solutions were
available before this theory was elucidated.)

6. UNIFORM APPROXIMATION FOR LINEAR WAVES AT A CAUSTIC

Section 3 illustrates the singular behaviour of a simple slowly-varying-wave approximation
at a caustic. The linear wave theory itself is not singular, either at a caustic or a focus. It is
well over a century since wave behaviour near a caustic was first effectively analysed (Airy
1838). Discussion usually starts from an integral formulation of the problem (see, for example,
Lighthill 1978) which is particularly appropriate for those cases where the inhomogeneities in
the waves are caused by the initial conditions or are produced in a small finite region. However,
often the wave propagation is entirely in an inhomogeneous region, for example waves of fluid
motion propagating in the ocean or atmosphere. In this case a differential approach which
can be added, as a local approximation, after calculating rays is likely to be more effective.

The extra terms which are needed to describe caustics and which do not appear in the basic
theory outlined in the previous sections are called ‘diffraction’ terms by Hayes (1973) and
‘higher-order dispersive’ terms by Whitham (1974). Both descriptions are suitable, but since
‘diffraction’ is used in other senses, the latter description is used here and is abbreviated to
‘h.o.d’

There are several ways in which the h.o.d. terms may be derived. The most satisfactory
derivatives include careful expansions in terms of a small parameter, and corresponding
multiple time and space scales (Smith, 19764). Here, we aim for a quick simple derivation. A
heuristic Taylor expansion of an operator is used. Similar devices have been used for many
years (for example by Rayleigh in 1876, see Lamb 1932, § 252; Benney & Newell 1967;
Davey 1972). It is clear that this method may be justified rigorously for simple linear partial
differential operators on suitably well-behaved functions, but it would be interesting to know
the limits to its use, for example, (a) for complicated linear operators, such as that for water
waves in water of depth A, which gives

G(w, k) = w*— gk tanh kh, (6.1)
and (4) for nonlinear operators.

The linear equations for wave propagation can be written in a form

0 0
G| =, — = .
(533 %) # = . (6.2)
where ¢ is a linear operator. For a single-wave solution we can identify this equation with
its ‘Fourier transform’ G(w, k, %,1) aeix = 0, (6.3)

where G = 0 is the dispersion equation and its (#, ¢) dependence is on a longer scale than that
of x. Rapid variations are taken to be entirely in

X = k-x—wt.

Now, for a local solution in the neighbourhood of a point ¥, where w = w, and k = k,,
and the amplitude is considered to vary slowly we identify

k with ky—id/0x,
and w with ©,+id/ 0,
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so that equation (6.3) becomes

. 0 . 0 .
G (w0+1 PYe ky,—1 % x) a(x, t) el = 0. (6.4)
By allowing slow changes in phase to be accounted for by complex values of a and by assuming
that a Taylor expansion of the function/operator G is valid about (w,, k,, %,), equations (6.4)
becomes

Ga+ic, 2 _ig,.2

. 0% 0%a 0%a
——1G- 1
Ot k

a Y
x+(x— xo)'(’xa"%Ga)a)'é'EE_ka'm_§ ety T

= =0, (6.5)
in which G and its derivatives are evaluated at (w,, ko, %).
For the region close to a straight caustic, ¥ =0, of the type considered in § 3, G, is zero and

the amplitude only varies with x. Hence equation (6.5) reduces to
xG a—%G,d%a/da? = 0, (6.6)
for which the appropriate solution is
a = A, Ai (p), with p = x(2G,/Gy)b. (6.7)

Similar Airy function solutions result when the caustic is curved. The complex constant 4,
is found by matching the Airy function with the ray solution by using the asymptotic formula:

Al (p) = —nb(=p)tsin [3(-p)i+in], (6.8)

for large negative values of p.

The range of applicability of an Airy function representation can be greatly extended if the
amplitude 4 and argument p are regarded as functions of position to which the above results
are the one-term Taylor-series approximation (Ludwig 1966). The asymptotic formula (6.8)
permits the uniformly valid Airy function solution to be determined from the singular ray
solutions for the waves incident on and reflected from the caustic. Thus the singular repre-
sentation u = a exp (ix®) +a® exp (ix®), (6.9)
where ® and @ denote incident and reflected wave trains, is replaced by (or smoothly
matches with) the uniform representation

u = {4 Ai (p) +iC Ai’ (p)} exp (io), (6.10)
where p= —[HxO-x®)1, o = (0 +x®),
} (6.11)
A = mt(=p)t (a®+a®), C = ni(—p)~t (a®—a®@).

For a number of types of waves the computer calculation of ray paths, and hence of the
linear ray solutions, has become routine. Careful programming permits the ray solution to be
continued after any reflection at caustics. To adapt such a computer calculation to remain
valid at caustics merely requires a sub-routine to evaluate Airy functions, and the use of equa-
tions (6.10 and 6.11). Some numerical smoothing may be desirable since in the immediate
vicinity of the caustic the numerical values of the ray quantities may be unreliable, but it is
known that the derived quantities p, o, 4, C vary smoothly.

34 Vol. 292. A.
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7. HIGHER-ORDER-DISPERSIVE EFFECTS FOR NEAR-LINEAR WAVES

Near-linear terms can be included in the analysis of the previous section by noting that usually

the dispersion equation has the form
G +H|a|? = 0. (7.1)

The partial derivative of this expression with respect to |a|? is H and so the first term in its
Taylor expansion about |a|? = 0 is H|a|? which gives a plausible reason for adding a term
H|a|? on to equation (6.5). The plausibility of this latter move is increased by considering
equation (6.5) with this nonlinear term for a uniform medium, i.e. G, = 0, and in a frame
of reference moving with the linear group velocity. Then G = 0 and G, = 0. The equation
that results from keeping only the most important time and spatial derivatives is
Gy o Y G aig +Hla|?a = 0. (7.2)
This equation is the now well-known nonlinear Shrédinger equation for modulated dispersive
waves (Whitham 1974, ch. 17). The second derivative terms in (7.2) represent the effect of
h.o.d.
By adding the near-linear terms to the equation (6.6) for waves near a straight caustic, we
obtain
-1G @+x0 a+Hla|’a = 0 (7.8)
2 gp3 P . .

This can be transformed into the standard form chosen by Smith (1976a) by introducing p
and 4, as used in the linear h.o.d. solution (6.7) to give

d? Ai (p; B)/dp*—p Ai (p; )+ A2 (p; B) = 0, (7.4)
where a=AdyAi(p;f) and g = ZHAZ (2%,’) (7.5)

Miles (19784, b) also meets this equation and chooses the standard form

2
%;‘:-—pA +243% = 0, (7.6)

where A = |3BIE A (p; ) = alH/2G,}|H/Gy. (1.7)

The most suitable choice of normalisation depends upon the physical context. The first
standard form (7.4), together with the far field condition (7.8) given below, is appropriate
for wave reflexion. Particular emphasis is given to the oscillatory side of the solution and to
the close connection with Airy functions (hence the suggestive notation). On the other hand,
the second standard form (7.6) with the boundary condition

4 ~cAi(p) as p—> oo,
emphasises the non-oscillatory side of the solution. For ¢ < 1 the two families of solutions are
the same with £ =2In(1+e2).

3

However, for the ‘—’ case with ¢ > 1 the solutions of equation (7.6) are non-oscillatory and

become unbounded as p tends to minus infinity.
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The solutions of these equations are Painlevé transcendents. They are real functions which
is why the modulus sign was dropped in the standard forms (7.4 and 7.6). The magnitude of
the nonlinear effects near the caustic is indicated by the value of f. It is only for extremely
large f that there is any substantial variation in the maximum wave amplification from that
of the linear Airy function solution. The most marked effect is that there is phase shift of the
wave profile. This reveals itself both in the far-field solution

Ai (p3 B) = md(—p)~tsin [§(— p)}+ (#6/m) In |p] +const.], (1.8)
and in the form of the differential equation
d? Ai (p; B)/dp*—[p— B Ai* (p; B)] Ai (p; B) = 0. (7.9)

By comparing this equation with the Airy equation an indication of the shift is obtained by
setting the term in square brackets to zero. The direction of the shift is seen to depend on the
sign of # which, since it depends on the sign of H/G};, depends on whether the caustic is of
type R or S. For type R caustics, §# < 0, and the waves do not reach as far as in the linear
solution. For type S caustics, # > 0, and waves penetrate further.

Some further analysis is possible for the unsteady near-linear case, for which a canonical

form of equation (7.2) is
aA a 24

2
Laptavs —XA+2|4)24 = o0, (7.10)
G, ( Gy\?
where T= t? (20 ) (7.11)
Kaup & Newell (1978, § 6) show that a further transformation of variables
E=X+T% 7=1T, (7.12)
$(& 7) = A(X, T) exp [((XT+3T%)], (7.13)
gives the nonlinear Schrédinger equation
i 5 2522101 = o (1.14)

The nonlinear Schrédinger equation has been studied intensively in the last few years (see
references in Kaup & Newell 1978). Solutions of particular importance are the ‘envelope

liton’
SOTe ¢ = psech (ug2-%) exp (iu27) (7.15)
for the ‘4’ equation, and the ‘envelope hole’

¢ = ptanh (p£2-1) exp (—2iu27) (7.16)

for the ‘-’ equation. The corresponding solutions 4(X, T') do not appear to be of particular
value in these cases. They show none of the variation in amplitude one would expect to find
associated with the caustic since

14| = [¢], (7.17)

and the amplitudes are independent of time.
The expression (X+ T2) = £ may be thought of as the primary phase function of the modu-
lation since § = constant describes the path of a soliton into and away from the caustic.
34-2
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However, the apparent frequency and wavenumber of the modulation in these solutions are

-0y /0T = —p?+ (X+T?% or 2%+ (X+T?), (7.18)
and oy/ox = —T, where o = arg (4). (7.19)
Thus, for both the ‘+’ and ‘-’ cases, there is secular variation with & and T of the phase

modulation. It may be that just this variation is necessary to maintain the constant amplitude
of the soliton. Similar criticisms apply to the more complicated explicit solutions of the non-
linear Schrédinger equation which describe multiple soliton interactions. For more discussion,
see Newell (1978).

8. CONCLUSION

Linear and near-linear waves in the vicinity of a caustic have been examined. Solutions for
linear waves, including expressions for matching them, have been derived in a succint manner
so that applications are straightforward. For near-linear waves the existence of two different
types of behaviour near caustics have been exposed. The h.o.d. terms give equations which
permit uniform solutions at caustics, but although one finds non-singular solutions it does not
follow that the true solution is found to a particular physical problem.

The companion paper, P. & T., shows that when finite-amplitude solutions are used, rather
than small-amplitude near-linear solutions, a different picture emerges for a type S caustic.
The example studied in P. & T. is for waves meeting a directly adverse current. Solutions are
found which at all points satisfy a requirement that they be slowly varying, so there is no need
to look for h.o.d. effects. But these solutions show the wave amplitude growing right up to the
maximum for which plane wave solutions exist. In this particular physical context we then
expect waves to break. Conversely for a type R caustic slowly varying solutions become singu-
lar at quite small amplitudes so that it is to be expected that h.o.d. solutions apply. Thus we
come to the tentative conclusion that (i) type R caustics are regular, smooth solutions can be
found and the wave field has no singularity, and (ii) type S caustics may be singular and if
waves can break in some sense, as is the case for surface waves and internal gravity waves, then
they may do so.

There appears to be a similarity between type S caustics and water waves incident on a
beach. A simple linear ‘ray’ theory would give a singularity at the shoreline as the wavelength
approached zero with the depth. However, more detailed linear analysis gives uniform solu-
tions which correspond to perfectly reflected waves. For very low steepness waves this is what
is observed, except for viscous effects. If a shallow-water (corresponding to slowly varying)
nonlinear theory is used then waves above a certain steepness exhibit a singularity of the
approximation. Meyer & Taylor (1972) give explicitly the bounding amplitude of perfect
reflexion in this theory. If a uniform near-linear approximation is used (e.g. the Boussinesq
equations as in Peregrine 1967) then we do not expect solutions to have singularities, though
at present such a theory has not been extended to the shoreline. However, we know that in
practice all but the gentlest waves break on a beach and there is usually little reflexion (less
than 109, is normal).

If the tentative conclusion that R caustics are regular and S caustics can be composed of
strong nonlinear waves is accepted, the analysis of curved caustics in § 4 is particularly valuable
in answering qualitative questions such as ‘are strongly non-linear waves likely to arise?’ in
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NONLINEAR EFFECTS NEAR CAUSTICS 361

particular circumstances. Strongly nonlinear waves are likely to arise at S type caustics and
for wide classes of wave propagation the type of caustic depends only on the sign of the function
H in the dispersion relation (2.15).

For deep-water gravity surface waves H is negative so that curved caustics are of type R.
For capillary-gravity waves (Wilton 1915, or see Lighthill 1967, eqn (89)), H changes sign at
the wavenumber corresponding to the minimum group velocity k% = }pg/v, where vy is the
surface tension. Thus strong nonlinear effects can be expected near curved caustics of capillary
waves, if viscous effects do not dominate.

For nonlinear optics, Whitham (1974, eqn 16.11) gives the dispersion relation

21,2
W
2 2
w?— v}

3ae3 VS w?
oty

w?— — 3k + a@+..=0 (8.1)
for near-linear propagation of electromagnetic waves in a dielectric. For the normal case in
optics, where a > 0 and w? < vy(vy—v,), H is positive and curved caustics may be strongly
nonlinear. The physical event corresponding to breaking of water waves is probably the electri-
cal or mechanical breakdown of the propagating medium.

In all these cases, there is little point considering behaviour at a caustic, if waves become too
strongly nonlinear before the caustic is reached. This clearly occurs in some solutions given by
P. & T. for water waves on an adverse current. This is also possible for waves approaching a
curved, R-type, caustic. A paper on finite-amplitude water waves approaching such a caustic
is in preparation.

Four major points have not been treated here. One is the matching of an h.o.d. near-linear
solution at a caustic with a near-linear slowly-varying solution away from a caustic. This
problem is twofold. Both the near-linear equations and the solution not too far away from the
caustic must involve both the incident and reflected wave trains. That is it may be based on

an averaged Lagrangian of the form
L = Gya2+Gyad+3H, a3 + s Hyay + 1,03 a3, (8.2)

where suffices 1 and 2 refer to the two wave trains and I;,(k,, k,) comes from the interaction
of the wave trains. For example for deep water waves one might use the results from Longuet-
Higgins & Phillips (1962), from Willebrand (1975) or from Weber & Barrick (1977).

The second, more difficult, problem is how to determine when an h.o.d. near-linear solution
to a type S caustic is invalid. It is possible that one simply needs to check that the predicted
maximum wave amplitude is within reasonable bounds, but the results of P. & T. do not give
much confidence that this will be adequate.

The third point, for which further analysis is required, is a treatment of waves, such as near-
linear water waves in finite-depth of water, which need further variables arising from non-
periodicity of a potential function.

The fourth topic is the behaviour of non-dispersive waves for which some results are given by
Ostrovsky (1976) and Bobbit & Cumberbatch (1976).

The bulk of this paper has concerned caustics, that is the simplest type of singularity of the
linear ray solution. Higher-order singularities can be expected to be met less often, but this
reduced frequency of occurrence is partially countered by greater wave intensification. The
locally large amplitudes mean that studies of nonlinear effects are particularly pertinent.
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362 D. H. PEREGRINE AND R.SMITH

Higher-order singularities may be viewed as coalescences of caustics, and the necessary mathe-
matical methods are an extension of those developed for caustics. There are three illustrations
of this extension in the appendices.

The first, appendix A, considers near-linear effects near a straight triple-root’ singularity;
that is where two caustics coalesce with the dispersion relation having a triple root in wave
number. This may be contrasted with the simpler case where the spatial variation corresponds
to two coalescing caustics; see McKee (1975), Peregrine & Smith (1975) and Stiassnie &
Dagan (1978) for water-wave examples. Near-linear and h.o.d. effects for the triple-root
caustic are considered in appendix C.

Appendix B gives a uniform linear approximation for a cusped caustic. During the prepara-
tion of this paper we learned that this repeats work of Holford (1974) but feel that since only
a very brief abstract was published, more detail would be of value.

A brief account of some of this work was presented at the I.U.T.A.M. symposium on ‘Waves
on water of variable depth’ at Canberra, July 1976 (Peregrine & Thomas 1976) and other
parts were presented at a conference of the Institute of Mathematics and its Applications in
June 1977 by R. Smith. During this collaboration R.S. was supported by a fellowship from
C.E.G.B.

ApPPENDIX A. NONLINEAR EFFECTS NEAR A ‘TRIPLE ROOT’ CAUSTIC

For one-dimensional linear wave propagation a triple root is defined to be the circumstance
in which there is a three-fold coalescence of roots of the dispersion relation. If G(x, k) has a
Taylor series expansion, then at the triple root

G(0, ko) = G1(0, ky) = Gy(0, ko) = 0, (A1)
where the triple-root position is taken to be # = 0. Thus, locally we have
G(x, k) = 2G4(0, ko) +§(1—1)* G11y(0, ko) + ... - (A2)

In order to achieve compatibility with the earlier conventions that the waves are incident
from the —x direction, and that G, is positive, it is necessary that G;;; be negative.

As noted in § 3, the fact that for linear waves the dispersion relation is uncoupled from the
wave action equation makes it particularly easy to investigate the nature of any singularities.
The dispersion relation (A 2) can be solved to give

L% ly= (66, /Gyt s, (A3)
and from the wave action equation (3.2) it follows that
a = ( - 233/9G§:Gl”)% x—%.

For near-linear waves the results (3.8-3.12) are valid independently of the presence or
character of any singularities. Thus in the (¥, /) plane the near-linear solution curves are to
the left or right of the linear-theory dispersion relation, G = 0, according to whether H/G,
is positive or negative. Also, for small wave-action flux, B, the solution curves remain close to,
but cannot cross, the two dividing lines

G = O and HGZ_%GHZ = O- (A 5)
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The particular character of the singularities is revealed when we come to sketch the curves
(A 5).
For triple roots these curves have the local approximations

#(Gu/Gy) = —3(U-L)* and x(Gu/G,) = (H/H,) (I-1,)2 (A6,AT)

At the triple-root position there is a two-point contact but the curves do not cross. If H, is
negative, solution lines are on the ‘other side’ of line (A 6)-(A 7) and so can smoothly pass
through the singular region, see figure 8(a), (4). However, despite their smoothness singular

(@)

Tz

1 X ] »—X

Ficure 8. Diagrams illustrating the behaviour of near-linear waves close to a ‘triple-root’ point. Heavy lines
represent the solutions (A 5) for B = 0. The thin lines sketch out possible near-linear solutions. The direction
of wave propagation (+x or —x) on each solution branch is indicated by arrows, and the lines are broken
where they depart far from the linear solution. All the diagrams are for G, > 0. For G, < 0 reflect the
diagrams about a horizontal line through the triple-root point. (a) H > 0, H; < 0. (b)) H < 0, H, < 0.

) H<0,H,>0.(d) H> 0, H,> 0.
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364 D. H. PEREGRINE AND R. SMITH

gradients are possible so that the obvious deduction of transmission of the wave through the
singularity (T — type?) needs to be verified by an h.o.d. calculation.

On the other hand if H, is positive there are five solution branches, see figure 8(¢), (d) and
the incident wave may be on a branch similar to that for an S-type or an R-type caustic.
Indeed the triple root caustic should be envisaged as the coalescence of an R-type and an S-
type caustic, e.g. at the cusp points in figure 5.

Caustics may coalesce because of a spatial variation affecting the dispersion relation. That
is, if G, = 0 at a caustic. In these circumstances waves may be trapped, or partially reflected;
see McKee (1975), Peregrine & Smith (1975) and Stiassnie & Dagan (1978) for linear examples.

AprrPENDIX B. UNIFORM LINEAR APPROXIMATION FOR CUSPED CAUSTICS

Although the linear ray solution is not valid at caustics or higher-order ray coalescences, a
uniformly valid solution can be constructed by means of a canonical superposition of ray
solutions (Ludwig 1966)

v = [ (83,0~ 3, ) exp (ix(s, 8)) de. ® 1)

Here o7 is an in-phase amplitude term, x the rapidly varying phase, # is an out-of-phase
amplitude associated with the transverse (or modal) y-structure of the wave and & is a ray para-
meter, as in § 4. Away from the region of coalescence the integral can be approximated by the
method of stationary phase:
U~y (gn)% |a§x<y'>1—% | £ —i%D| exp (ix?), (B 2)
J
where Ogx =0 at & = &0, (B 3)

This is precisely the linear ray solution, with due allowance for distinct ray paths going through
the one physical point. Thus, as has often been noted, once the linear h.o.d. solution is known
it is straightforward to determine the non-uniform ray solution. The purpose of this appendix
is to show that for cusped caustics the reverse is also true. Namely, that the singular ray solu-
tions provide sufficient information to permit the construction of the uniform solution.

The various types of ray coalescences can be catalogued in terms of the change in the number
of real roots of the stationary phase condition (B 3). Thus, as canonical forms for y it is natural
to choose simple polynomials in £ with the required root behaviour. Equivalently, we can make
direct use of the standard forms provided by Catastrophe Theory (Thom 1975, Berry 1976).

For a caustic there are two roots before the reflexion line, corresponding to incident and
reflected waves, and no real roots after the reflexion line. The appropriate canonical form for
the phase function is

X = 38+pk+o, (B 4)
and the stationary phase condition becomes
Ox = £24p = 0. (B 5)

This is called the ‘fold’ catastrophe and the canonical coordinate p demarcates the two sides
of the caustic (i.e. the number of real roots). For the amplitude factors it suffices that there is
linear dependence upon &:

o = (1/21) (A+£C), B = (1/2m) (B+ED). (B 6)
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NONLINEAR EFFECTS NEAR CAUSTICS 365

The reason for this is that if .o/ or # had higher-order polynomial dependence upon £, then
repeated integration by parts would reduce the polynomials, modulo 9, until a linear form
was obtained. The inclusion of the factor 1/2r in equation (B 6) ensures that when the contour
I'is chosen to be along the real axis the ansatz (B 1) takes the more familiar Airy function form

u = exp (i0(%)) {[A(%, y) —iB(%,y)] Ai (p(#)) +i[C(%, y) —iD(%, y)] AL" (p())}.  (B7)

Ficure 9. Ray paths near a cusped caustic.

For a cusped caustic there are three real roots between the caustic and one real root outside
(see figure 9). The canonical form is that of the ‘cusp’ catastrophe

X = &g —pl+o, (B 8)
with the stationary phase condition
dx = B—vE—p = 0. (B9)
In terms of the canonical coordinates p, v the region between the caustics is given by
27p% < 418, (B 10)

Since 9;x is a cubic, it suffices that the amplitude factors are quadratic in §:
o = A+EC+EE, B = B+ED+EF. (B 11)

Evaluating the integral (B 1) along the real axis gives an ansatz involving Pearcey functions
(with the normalization and notation used by Hughes 1976):

u = exp (io) {(A—iB) L(y, p) + (C—iD) L(», p) + (E~iF) (v, p)}. (B12)

The problem being addressed in this appendix is how the coefficients o, v, p, 4, B, C, D, E, FF
involved in the uniformly-valid solution (B 12) can be determined from knowledge of the

singular ray solutions 3
u~ Y (a9 —ibM) exp (ixM). (B 13)
i=1

The first, and most difficult, aspect is to find o, v, p when given three values
X = 18- g -pk o,

35 Vol. 292. A.
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366 D. H PEREGRINE AND R. SMITH

where £; are the three roots of the cubic equation

§B—vg -p =0,
the x being known from the solution (B 13).

Considerations of symmetry with respect to the three phases leads us to evaluate the linear,
quadratic and cubic combinations

% = HAO+x®+x0) = -, (B 14)
2= HO-B) (- + (k- (@-B) + (%) (O -X)} = kDB + 54, (B 15)
IT = (x0-3) (X ~X) (AO—F) = whe? — oo™~ 3ot (8 16)

The form of these results suggests that we should first solve equations (B 15, 16) for p, » and
subsequently solve equation (B 14) for . Note the care which must be taken in numerical
work because of the differences of ys in 2 and I1.

Ficure 10. Graphical solution of the quartic (B 17) for »2.

We can eliminate p? to give a quartic for »%:
411(3v?) = (3rv?)t—62(§v?)2— 322 (B 17)
The graph (figure 10) of the two sides of this equation reveals that there is a unique positive

root for »%, and hence for v, provided that — I7 is sufficiently small. Using the explicit formula
for the solution of quartic equations (Abramowitz & Stegun 1964, § 3.8) we obtain

v = 2 S¥sgn (1) (1—p)d+[2+p+2(1+p+p?) ], (B 18)
) 418 —217p2) [27p2]}
with p = [1— Iz = ((V’;+54/f2)) [41’;’,] . (B 19)

The condition (B 10) that there be three real rays ensures that u is positive. It happens that
this is precisely the bound that is needed to guarantee the uniqueness of the positive solution
(B 18).

From equations (B 14, 15) it is now trivial to calculate the second canonical coordinate p
and the phase function o:

p = +[(144Z—v¥)/54v]}, o = F+iv2 (B 20, 21)
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NONLINEAR EFFECTS NEAR CAUSTICS 367

Since p is a continuous function, the selection of sign can be resolved by arbitrarily choosing
that p should be positive near one of the caustics and negative near the other.

Having determined the coordinates p and v it is straightforward to determine the amplitude
terms. First, we solve the cubic (B 9) to find the roots §; associated with each of the three ray
paths:

g =rcosyy, & =—Ltrcosyr—5L43rsiny, & =—3rcosyy+4/3rsiny, (B22)
with r2 = 4v, cos 3y = 27p%/13. (B 23)

Then we identify the amplitude factors in the alternative ray solutions (B 2) and (B 13):
1 & &4 (3£1— )t a®
[1 L & [0] = (2m) [(%3— vt a<2>], (B 24)
1 & £

E (33— )t o
with a similar equation for B, D, E in terms of . These linear equations can be solved by
means of Vandermonde determinants. For example, the explicit solution for 4 is

«w

(88 —v)t a1 850n :

, with §;.. = §&. B 25
B G G- s = & (B20)
The corresponding solutions for C and E can be obtained by replacing £;,; and £;,, in the
numerator by £; and 1 respectively.

A = (2m)-

I

To make practical use of the results derived above, the order of procedure would be as
follows. First, the conventional ray solution would be found. This reveals the presence and
position of caustics and cusps. Secondly, in the region between the cusped caustics the linear,
quadratic and cubic combinations ¥, 2 and I of the phase functions would be evaluated.
The solution for v is then given explicitly by equations (B 18, 19) and p, o follow from equa-
tions (B 20, 21). Thirdly, the Vandermonde equations (B 24) or (B 25) yield the amplitude
factors. Finally, to construct the uniform solution (B 12) it is necessary to be able to evaluate
the Pearcey functions. (If it is only the peak wave intensity that is of concern then it suffices
to know that the global maximum of I, is about 3.6.) An important practical point is that all
the parameters of the uniform solution vary smoothly. Thus numerical smoothing is permissable,
and indeed desirable, in any implementation of the above procedure.

AprPENDIX C. HIGHER-ORDER DISPERSIVE EFFECTS UPON NEAR-LINEAR
WAVES NEAR TRIPLE ROOTS

The idea underlying the operator expansion method employed above in §§ 6 and 7, is
that the essential character of waves near a ray coalescence can be revealed by a truncated
series expansion of the dispersion relation. The retention of too few terms means that some
features are lost, while the retention of too many terms gives unnecessary complexity. For
caustics the appropriate level of truncation was obvious and leads to a model equation
0a
ot
in which G,, etc., are evaluated at (wy, Ky, 0). At a triple root the coefficient G, is zero. Thus,
one might expect that it would suffice simply to retain the G;; term:

da ... O
7()7+%1Gm—6x—3+x0wa+H|a|2a = 0. (C2)

2
i, 2 4Gy T +xG,a+ Hlala = 0, (C 1)

iG,

35-2
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368 D. H. PEREGRINE AND R.SMITH

While this is an adequate model of the waves when the triple-root condition is met exactly,
it fails to describe the change of behaviour when the wave frequency is slightly detuned.

One means of resolving this problem is to use formal asymptotic approximations involving
a small parameter. For example, the work of Smith (19764) reveals that there are rapid
variations on three distinct length scales ¢, €?, e}. An interpretation of this behaviour is that
the appropriate level of truncation is different in three different directions in the parameter
space (, [, x). The orientations of these directions are related to the topology of the linear
dispersion relation (see figure 11). This leads us to make a heuristic derivation based upon the
use of catastrophe theory.

~—>

Ficure 11. The linear dispersion equation as a folded surface showing orientation of axes.

The projection of the dispersion relation onto the (w, x) plane is a cusp. There are three roots
for / inside the cusp, and outside there is only one root. Not surprisingly, this is precisely the
type of root behaviour that we have been studying in the previous appendix. Thus, the linear
dispersion relation has the canonical representation

(I~ Loy =5l ~lo) = = 0, (C3)
where 7, 5 are functions of ¥ and w. Moreover, any local representation must have terms
corresponding to both # and § if it is to preserve the essential character of the root coalescence.
The inadequacy of equation (C 2) can be attributed to the absence of a counterpart to #(I —/).
That is, the absence of a term involving a single derivative with respect to .

The canonical quantities § and ¥ respectively can be thought of as being generalisations of
the distance from the coalescence point and the frequency detuning. Far from the triple-root
position the detuned waves can be expected to resemble more nearly an exact triple root.
Thus, in seeking to improve upon the model equation (C 2) it is necessary to evaluate the ¥
term at g = 0. This simple observation is in fact the crux of a successful heuristic derivation.
The failure of equation (C 2) can be attributed to an incorrect choice of the curve in (o, x)
space along which the # term is evaluated. Catastrophe theory helps to define the important
orientations.
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By taking the Taylor series expansion of G(w, {, x), substituting for (/—/,)3 from the cubic
(C 3) and equating powers of (I—1;), we find that near the triple point

—%Glllﬁ = (w“wo) Gw+xGx+“‘:

—%Gl”ﬁ = ((!)—'(l)o) Gwl+xG$l+ ceey (C 4:)
where all the partial derivatives are evaluated at the triple point. In particular, along the
curve § = 0 we have x = — (0w —0,) G,/G,, and thus

=36 ¥ = (0—wo) [Go1— G, Gt/ G,]- (C5)

Hence, correct to leading order in (w—w,) and #, the canonical representation (C 3) of the
linear dispersion relation becomes

Gl =1)*+ (G~ G, G0/ Go] (0 —y) (I=1) + (0 =) G, +xG, = 0. (G 6)

If now we include the local first approximation to the nonlinear term and we replace
—i(w—wy), i(l—1,) by partial derivatives, we find that the resulting model equation is

.~ Oa 0% .. 0%
le 'a—t' + [Gwl_ Gwal/Gw] m'l' %lGlll 5;§+xGxa+Hla|2a = 0. (C‘ 7)
As a partial check upon the validity of equation (C 7) we can verify that for infinitesimal,
strictly periodic waves the solution is a Pearcey function, and furthermore, the arguments
agree with the first two terms of a formal perturbation expansion derived by Smith (1976).
Specifically, if we use the local amplitude 4, of the linear h.o.d. solution then for periodic

waves equation (C 7) can be transformed to the standard form

—i Tamive g —pI+AIIPT = 0,
with the far field conditions
I~ |p|* (8n)} exp {—i[3pt + 4vopt £ const.]} as p-—> + oo
For G,/G;; positive the details of the transformation are
a = AoI(vo, p; B); B =—AFH|}G,,,G3|H,
vy = = (0—y) [G, Gy =G, Go] [$G1nGE| 2,
p = {(0—0y) G, +1G;} |46, G3| 4,

the expressions for the arguments vy, p, £ of the Pearcey function agreeing with Smith’s equa-
tions (134, ¢, d). For G,/G;; negative it suffices to replace I by its complex conjugate and to
reverse the sign of # and p in the above equations.
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